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Abstract

For a sparse, disordered, plane-parallel particulate medium, we analyze quantitatively the effects of particle

microphysical properties on the values of the linear and circular backscattering polarization ratios. Using numerically

exact T-matrix and vector radiative-transfer codes, we performed computations for the following models: (1) a semi-

infinite homogeneous layer composed of randomly oriented, polydisperse oblate spheroids with the real part of the

refractive index equal to 1.2, 1.4 and 1.6 and the imaginary part of the refractive index equal to 0 and 0.01; (2) a semi-

infinite homogeneous layer composed of randomly oriented, polydisperse, oblate circular cylinders with the refractive

index 1.4; (3) finite homogeneous layers of various optical thickness composed of randomly oriented, polydisperse, oblate

spheroids with the refractive index 1.55. Our computations demonstrate that the values of the polarization ratios depend

substantially on particle shape, real and imaginary parts of the particle refractive index, particle size relative to the

wavelength, illumination geometry and optical thickness.
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1. Introduction

In this paper, we continue the analysis of the effects of particle properties on the characteristics of coherent
backscattering in situations when the incident light is linearly or circularly polarized [1,2]. The interest in these
polarization states of the incident light stems from the fact that they are often encountered in practice, e.g. in
radar and lidar remote sensing. The results of such observations of particulate media are inevitably affected by
coherent backscattering [3–5], and the observed characteristics of light reflected in the exact backscattering
direction can yield essential information on the particle microphysical properties. It is, thus, important to
analyze theoretically how the observable characteristics of coherent backscattering can be affected by the
properties of particles forming a medium, in particular, by particle shape.
e front matter r 2007 Elsevier Ltd. All rights reserved.
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Consistent with the above rationale, the purpose of the present paper is to study the properties of such
useful observables as the backscattering polarization ratios. Specifically, we present and discuss the results of
theoretical computations of the linear and circular polarizations ratios for sparse, disordered, plane-parallel
media composed of polydisperse, randomly oriented oblate spheroids and circular cylinders with varying
values of the relative refractive index, effective size parameter, and shape parameter.

2. Basic formulae

Let the scattering medium be a plane-parallel slab composed of randomly distributed, indep-
endently scattering particles [6]. The slab is illuminated by a parallel beam of light incident in the
direction {y0Xp/2, j0 ¼ 0}, where we use the standard radiative-transfer terminology and notation [6,7]. The
Stokes vector is defined as a four-component column having the Stokes parameters as its compo-
nents (I ¼ [I Q U V]T, where T stands for ‘‘transposed’’), and R is the Stokes reflection matrix for
exactly the backscattering direction {y ¼ p�y0, j ¼ p}. Under the assumption of a macroscopically
isotropic and mirror-symmetric particulate medium, the matrix R has the following block-diagonal
structure [6]:

R ¼

R11 R12 0 0

R12 R22 0 0

0 0 R33 R34

0 0 �R34 R44

2
6664

3
7775. (1)

In accordance with the theory of coherent backscattering [6], the matrix R may be decomposed as follows:

R ¼ R1 þ RM þ RC, (2)

where R1 is the contribution of the first-order scattering, RM is the diffuse multiple-scattering contribution
consisting of all the ladder diagrams of orders nX2 and RC is the cumulative contribution of all the cyclical
diagrams. The matrices R1 and RM can be found by solving the full vector form of the radiative transfer
equation (see, e.g. [6,7]). Then the matrix RC can be obtained from the exact relations derived in [8].

In the case of incident light linearly polarized in the vertical direction (I0 ¼ [I0 I0 0 0]T), the vertically and
horizontally polarized components of the backscattered light are given, respectively, by

~Iv ¼ 1
2
ð ~I þ ~QÞ, (3)

~Ih ¼ 1
2
ð ~I � ~QÞ, (4)

where the tilde is used to denote quantities having the dimension of specific intensity [6]. The linear
polarization ratio mL and its diffuse counterpart mL

diff, defined as the ratios of the corresponding cross-polarized
and co-polarized backscattered specific intensities, are given by the following formulae:

mL ¼
~Ih
~Iv
¼

R1
11 � R1

22 þ RM
11 � RM

22 � RM
33 þ RM

44

R1
11 þ R1

22 þ 2RM
11 þ 4RM

12 þ 2RM
22

, (5)

mdiffL ¼
~I
diff

h

~I
diff

v

¼
R1

11 � R1
22 þ RM

11 � RM
22

R1
11 þ R1

22 þ RM
11 þ 2RM

12 þ RM
22

. (6)

When the incident light is circularly polarized in the anti-clockwise sense as viewed by an observer looking
in the direction of propagation (I0 ¼ [I0 0 0 I0]

T), the ‘‘same-helicity’’ and ‘‘opposite-helicity’’ components of
the backscattered light are given by

~I sh ¼ 1
2
ð ~I þ ~V Þ, (7)

~Ioh ¼ 1
2
ð ~I � ~V Þ. (8)
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The circular polarization ratio mC and its diffuse counterpart mC
diff, defined as the ratios of the corresponding

same-helicity and opposite-helicity backscattered specific intensities, can be found from

mC ¼
~I sh
~Ioh
¼

R1
11 þ R1

44 þ 2RM
11 þ 2RM

44

R1
11 � R1

44 þ RM
11 þ RM

22 � RM
33 � RM

44

, (9)

mdiffC ¼
~I
diff

sh

~I
diff

oh

¼
R1

11 þ R1
44 þ RM

11 þ RM
44

R1
11 � R1

44 þ RM
11 � RM

44

. (10)

For grazing incidence and/or a small single-scattering albedo $, the main contribution to the
backscattered diffuse radiation comes from the singly scattered light. This means that with m0-0 and/or
with $-0 the diffuse multiple-scattering component of the Stokes reflection matrix RM decreases and
ultimately vanishes in comparison with the first-order-scattering component, and from Eqs. (5)–(6) and
(9)–(10) we derive

lim
m0!0

mL ¼ lim
m0!0

mdiffL ¼ lim
$!0

mL ¼ lim
$!0

mdiffL ¼
R1

11 � R1
22

R1
11 þ R1

22

¼ dL, (11)

lim
m0!0

mC ¼ lim
m0!0

mdiffC ¼ lim
$!0

mC ¼ lim
$!0

mdiffC ¼
R1

11 þ R1
44

R1
11 � R1

44

¼ dC, (12)

where dL and dC are the single-scattering linear and circular backscattering depolarization ratios [1]. The
general analytical properties of the polarization ratios for spherical and randomly oriented nonspherical
particles have been studied in detail in [6,9]. In particular,

mLX0, (13)

mdiffL X0, (14)

mCX0, (15)

mdiffC X0. (16)

3. Numerical results and discussion

To study the potential effect of particle nonsphericity on the linear and circular polarization ratios, we have
chosen the model of randomly oriented spheroids and finite circular cylinders distributed over surface-
equivalent-sphere radii r according to the simple power law:

nðrÞ ¼
constant� r�3; r1prpr2;

0 otherwise:

(
(17)

The effective radius and effective variance of the size distribution are defined by

reff ¼
1

hGi

Z r2

r1

drnðrÞrpr2, (18)

ueff ¼
1

hGir2eff

Z r2

r1

drnðrÞðr� reff Þ
2pr2, (19)

respectively, where

hGi ¼

Z r2

r1

drnðrÞpr2 (20)
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is the average area of the geometrical projection per particle [10]. The shapes of spheroids and circular
cylinders are fully characterized by a shape parameter, E, defined here as the axis ratio a/b for spheroids,
where b is the rotational (vertical) semi-axis and a is the horizontal semi-axis, and the diameter-to-length ratio
for cylinders. The computations of the linear and circular polarization ratios and their diffuse counterparts
have been performed for semi-infinite and finite homogeneous plane-parallel slabs, and below we shall discuss
the results obtained for both cases.

3.1. Semi-infinite slabs

We have considered the case of oblate spheroids with the real part of the refractive index mR ¼ 1.2, 1.4, and
1.6, the imaginary part of the refractive index mI ¼ 0 and 0.01, a range of values of the effective size parameter
xeff ¼ 2preff/l1 (l1 is the wavelength of the incident light in the surrounding medium), and axis ratios 1pEp2.
The effective variance of the size distribution was fixed at 0.1. To make our analysis more representative,
analogous computations have also been performed for oblate cylinders with the real part of the refractive
index mR ¼ 1.4. We have used the FORTRAN T-matrix codes described in [11] and based on the Waterman’s
T-matrix approach [12] as well as the vector radiative-transfer codes based on the numerical solution of the
Ambarzumian’s nonlinear integral equation as described in [6,13]. The main results of these computations are
shown in the form of surface plots of mL, mL

diff, mC, and mC
diff as functions of the effective size parameter and

shape parameter for y0 ¼ 0 (m0 ¼ 1) and y0 ¼ 89.51 (m0 ¼ 0.008), Figs. 1–5. Note that the results of numerous
computations of these characteristics for spherical particles have been presented and analyzed in [4,9].

Fig. 1 depicts the calculated dependences of the linear polarization ratios mL and mL
diff for three values of the

real part of the refractive index mR ¼ 1.2 (left-hand column), 1.4 (middle column), and 1.6 (right-hand
column) and mI ¼ 0. Let us first analyze the behavior of the full linear polarization ratio mL in the case of
normal incidence (m0 ¼ 1). One can see that for mR ¼ 1.2 and 1.4, mL is essentially independent of the shape
parameter, but for mR ¼ 1.6 and xeff44, the dependence on E becomes noticeable. It is seen also that mL
decreases with mR. These traits are largely caused by a significant increase in the first-order-scattering
contribution with increasing mR and by multiple scattering being a more efficient depolarizing factor than
particle nonsphericity.

In the case of grazing incidence (m0 ¼ 0.008), the Stokes reflection matrix is dominated by the first-order
scattering contribution. As a result, a pronounced dependence of mL on the shape parameter develops,
especially for mR ¼ 1.2. Interestingly, the linear polarization ratio is a non-monotonous function of the shape
parameter only for mR ¼ 1.2. This behavior of mL differs from the corresponding behavior of the helicity-
preserving enhancement factor [2] which shows a non-monotonous dependence on the axis ratio for mR ¼ 1.4
and 1.6 as well. Note that mL is close to zero in a significant range of xeff and E values. This can be explained as
follows: in this range of xeff and E, the values of the elements F11(p) and F44(p) of the single-scattering Stokes
matrix (and, therefore, R11

1 and R44
1 ) are very close, whereas the multiple-scattering contribution to the

reflection matrix is very small. Therefore, the numerator on the right-hand side of Eq. (5) tends to zero.
Physically, this corresponds to a very weak linear depolarization.

The calculated dependencies of mL
diff on xeff, E, mR, and m0 (the two bottom rows of panels in Fig. 1) are

qualitatively similar to those for mL. Let us also note the following. In the case of normal incidence and in the
absence of absorption, mLomL

diff for all values of xeff, E, and mR considered, which means that coherent
backscattering weakens the linear polarization ratio (or the degree of linear depolarization of the
backscattered light). However, in the case of grazing incidence and small xeff and/or E, one can see that mL
can be greater than mL

diff. With increasing shape parameter E in a number of cases, mL becomes smaller than
mL
diff, but we could not find a systematic dependence on the values of xeff and mR.
Fig. 2 depicts the linear polarization ratios mL and mL

diff in the case of absorbing spheroids with the imaginary
part of the refractive index mI ¼ 0.01. One can see a somewhat stronger dependence on xeff and E, especially in
the case of normal incidence. It is known that the most obvious effect of increasing absorption is to reduce the
single-scattering albedo. Hence, the multiple-scattering contribution to the reflection matrix must also
decrease, thereby causing smaller values of mL and mL

diff and stronger dependence on E compared with the case
of nonabsorbing particles. Note that our computations exhibit such a decrease in mL

diff for all values of xeff and
mR considered. As to mL, it does decrease with increasing absorption when mR ¼ 1.2. However, in the case of
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Fig. 1. Polarization ratios mL and mL
diff versus effective equal-surface-area-sphere size parameter xeff and shape parameter E for mR ¼ 1.2,

1.4, and 1.6 and m0 ¼ 1 and 0.008. The imaginary part of the refractive index is mI ¼ 0.
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normal incidence and mR ¼ 1.4 and 1.6, the full polarization ratio can increase with mI. This kind of behavior
of mL in the case of spherical particles was discussed in [9] and was attributed to the extreme complexity of the
process of multiple scattering. Note that for grazing incidence, the increase of mL with mI is hardly noticeable
because of the much reduced multiple-scattering contribution to the reflection matrix. It is also worth noticing
that unlike the case of nonabsorbing spheroids, mL

��
m0¼1

can be greater than mdiffL

��
m0¼1

for certain values of xeff

and E and for all values of mR considered.
Fig. 3 is similar to Fig. 1 but shows the results of computations of the circular polarization ratios mC and

mC
diff for mR ¼ 1.2, 1.4, and 1.6 and mI ¼ 0. One can see that in the case of normal incidence and mR ¼ 1.6 and

1.4, the dependence of mC on E is stronger than that of mL. This is also true of the dependence on xeff for all
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Fig. 2. Polarization ratios mL and mL
diff versus effective equal-surface-area-sphere size parameter xeff and shape parameter E for mR ¼ 1.2,

1.4, and 1.6 and m0 ¼ 1 and 0.008. The imaginary part of the refractive index is mI ¼ 0.01.
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three values of mR considered. In the case of grazing incidence, the calculated dependences of mC are
qualitatively similar to those for mL, but show much greater mC values.

The effect of absorption (mI ¼ 0.01) on the behavior of the circular polarization ratios is illustrated by
Fig. 4. In comparison with the respective linear polarization ratios, the dependence of mC and mC

diff on xeff and
E is more pronounced, especially in the case of normal incidence. The diagrams for mC and mC

diff are
qualitatively more similar to each other than the corresponding diagrams for the linear polarization ratios. In
particular, for mR ¼ 1.4 and 1.6 and in the range of small size parameters, mC and mC

diff show almost the same
behavior with increasing absorption: they first decrease with increasing absorption, then rapidly increase, and
finally decrease again. We remind the reader that in the case of linear polarization, this behavior was found
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Fig. 3. Polarization ratios mC and mC
diff versus effective equal-surface-area-sphere size parameter xeff and shape parameter E for mR ¼ 1.2,

1.4, and 1.6 and m0 ¼ 1 and 0.008. The imaginary part of the refractive index is mI ¼ 0.
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only for the full polarization ratio mL. It is interesting to note that our computations for mR ¼ 1.4 and 1.6 and
mI ¼ 0 and 0.01 show that mC

diffomC for both normal and grazing incidence. However, for mR ¼ 1.2, mI ¼ 0.01
and grazing incidence, mC

diff4mC for some values of xeff and E. This result is at variance with the conclusion
made in [6,9] that for spherical particles mC

diff is always smaller than or equal to mC, thereby illustrating a
different behavior of the helicity preserving and opposite-helisity enhancement factors for spherical and
nonspherical particles [2]. In addition we must note again that in many cases, the values of the circular
polarization ratios mC and mC

diff are much greater than those of their linear polarization counterparts (cf. [4,9]).
In order to extend the analysis of the effect of particle shape on the polarization ratios, we have also

performed computations for a semi-infinite slab composed of polydisperse, randomly oriented, finite circular
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Fig. 4. Polarization ratios mC and mC
diff versus effective equal-surface-area-sphere size parameter xeff and shape parameter E for mR ¼ 1.2,

1.4, and 1.6 and m0 ¼ 1 and 0.008. The imaginary part of the refractive index is mI ¼ 0.01.

J.M. Dlugach, M.I. Mishchenko / Journal of Quantitative Spectroscopy & Radiative Transfer 106 (2007) 21–3228
cylinders with mR ¼ 1.4 and mI ¼ 0 (Fig. 5). It is seen that the ratios mL and mC for the cylinders can exceed
those for the size- and shape-parameter-equivalent spheroids, especially for larger xeff. Overall, the results for
the E-equivalent spheroids and cylinders are rather similar.

3.2. Slabs of finite optical thickness

In this subsection, we consider finite plane-parallel particulate slabs with varying optical thickness T.
Computations of the linear and circular polarization ratios have been performed for optical thickness values
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T ¼ 0.01, 0.1, 1, 10 and for layers composed of oblate spheroids with mR ¼ 1.55 and mI ¼ 0. To compute the
elements of the matrix RM, we have used a computational algorithm based on the invariant imbedding
technique as described in [6,14].

Fig. 6 depicts the calculated dependences of the linear polarization ratios mL and mL
diff on size parameter

xeff and shape parameter E for m0 ¼ 1 and 0.008. One can see that in the case of normal incidence both mL
and mL

diff increase strongly with T. The dependence on the shape parameter E is quite noticeable for
small T, but weakens with increasing optical thickness. Besides, for T ¼ 0.01, 0.1, and 1 the values of mL
and mL

diff are close to each other. This means that the effect of coherent backscattering is rather weak.
However, for T ¼ 10, analogously to the case of a semi-infinite medium, mLomL

diff for all values of xeff and E

considered.
In the case of grazing incidence, there is no strong dependence of mL and mL

diff on T and the mL and mL
diff

values are nearly identical. These traits are a direct consequence of the dominance of the first-order-scattering
contribution to the Stokes reflection matrix. For the same reason, the dependences of mL and mL

diff on xeff and E

are very similar to those found for a semi-infinite layer. Specifically, one can see that both mL and mL
diff vary

with shape parameter when xeff44, and there is a significant range of xeff and E values where both ratios are
very close to zero, consistent with Eq. (11).
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The results of computations of the circular polarization ratio mC and its diffuse counterpart mC
diff for the

same optical thickness values are shown in Fig. 7. When m0 ¼ 1, one can see that mC and mC
diff are close to each

other when T ¼ 0.01 and 0.1. Similarly to the case of linear polarization, there is a significant range of xeff and
E values where both mC and mC

diff are close to zero. Both mC and mC
diff increase with T, their dependence on E

becomes weaker, and mC becomes greater than mC
diff. For grazing incidence, the mC and mC

diff values are close to
each other and hardly vary with optical thickness.

4. Conclusions

Using the model of a sparse, disordered, plane-parallel particulate slab composed of randomly oriented
oblate spheroids and cylinders, we have demonstrated that the values of the backscattering polarization ratios
depend substantially on particle shape, real and imaginary parts of the particle refractive index, particle size,
illumination geometry, and optical thickness. The dependence on particle shape is more pronounced in the
case of circular polarization, and in many cases the values of the circular polarization ratios are much greater
than those of their linear polarization counterparts. These results suggest that laboratory and remote-sensing
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measurements of the linear and circular backscattering polarization ratios can potentially be used as an
efficient particle characterization tool.
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